39 research outputs found

    Oil pollution in the southeastern Baltic Sea by satellite remote sensing data in 2004-2015

    Get PDF
    "jats:p"The results of satellite monitoring of oil pollution in the Southeastern Baltic Sea in 2004-2015 are discussed in the paper. Interannual and seasonal variability of oil pollution is investigated. A steady decrease in total oil pollution was observed from 2004 to 2011. After a sharp increase of oil pollution in 2012, oil pollution level has established at 0.39 PI Index. Maximum of oil spills is observed in the spring and summer, which is probably due to favorable weather conditions for the detection of oil spills on radar images. According to the analysis of the shapes of the detected oil spills, it was concluded that the main polluters of the sea surface are vessels. No oil spills originated from the oil platform D-6 was detected in 2004-2015. Results of numerical experiments with the Seatrack Web oil spill model show that in the case of potential discharge of oil from the D-6 platform, oil will not reach the Curonian Spit beaches during 48 h after an accident. Document type: Articl

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Interannual Variability of Water Level in Two Largest Lakes of Europe

    No full text
    Regional climate change affects the state of inland water bodies and their water balance, which is determined by a number of hydrometeorological and hydrogeological factors. An integral characteristic of changes in the water balance is the behavior of the level of lakes and reservoirs, which not only largely determines the physical and ecological state of water bodies, but also significantly affects the coastal infrastructure and socio-economic development of the region. This paper investigates the interannual variability of the level of the Ladoga and Onega lakes, the largest lakes in Europe located in the northwest of Russia, according to satellite altimetry data for 1993–2020. For this purpose, we used three specialized altimetry databases: DAHITI, G-REALM, and HYDROWEB. Water level data from these altimetry databases were compared with in-situ records at water level gauge stations. Information on air temperature (1945–2019) and precipitation (1966–2019) acquired at three meteostations located at Ladoga and Onega lakes was used to investigate interannual trends in the regional climate change. Finally, we discuss the potential impact of the lake level rise and regional climate warming on the infrastructure and operability of railways in this region

    Regional Climate Change Impact on Coastal Tourism: A Case Study for the Black Sea Coast of Russia

    No full text
    Regional climate change is one of the key factors that should be taken into account when planning the development of the coastal tourism, including investments and construction of tourism-related infrastructure. A case study for the Black Sea coast of Russia shows a series of potential negative hydrological, meteorological, and biological factors that accompany regional warming of the Black Sea Region, that can impede the development of coastal tourism and devalue billions of dollars in investments by the State, private companies, and individuals. We discuss such natural phenomena as air and sea warming, extreme weather events, coastal upwelling, heavy rains, river plumes, wind and waves, tornado, rip currents, sea-level rise, algal bloom, introduced species, and other features characteristic for the region that seriously impact coastal tourism today, and may intensify in the nearest future. Sporadic occurrence of extreme weather events, unpleasant and sometimes dangerous sea and atmosphere phenomena during the summer tourist season, and from year to year can be of critical psychological importance when choosing your next vacation and tourism destination. The research does not include anthropogenic factors, geopolitical, and socio-economic processes, and the COVID-19 pandemic that play an important role in the sustainable development of coastal tourism as well

    Integrated Use of Satellite Altimetry in the Investigation of the Meteorological, Hydrological, and Hydrodynamic Regime of the Caspian Sea

    No full text
    Oscillations in the Caspian Sea level represent the result of mutually related hydrometeorological processes, which proceed not only in the sea catchment area but also far beyond it. The change in the tendency of mean sea level variations that occurred in the mid 1970s, when a long-term level fall was replaced by a rapid and significant rise, represents an important indicator of the changes in the natural regime of the Caspian Sea. Therefore, sea level monitoring and long-term forecast of sea level changes represent an extremely important task. The aim of this publication is to show the results of the application of satellite altimetry methods to the investigation of seasonal and interannual variability of the sea level, wind speed and wave height in different parts of the Caspian Sea and Kara-Bogaz-Gol Bay, and the Volga River level. The work is based on the 1992 - 2006 TOPEX/Poseidon and Jason-1 datasets

    Railway Transport Adaptation Strategies to Climate Change at High Latitudes: A Review of Experience from Canada, Sweden and China

    No full text
    Impact of climate change on railway transport manifests in a variety of consequences, such as rail buckling, rail flooding, expansion of swing bridges, overheating of electrical equipment and its damage, bridge scour, failure of earthworks, ground settlement, pavement deterioration, damage to sea walls, coastal erosion of tracks and earthworks, and an increased number of railway accidents in general. Such impacts can cause considerable disruption of railway operations and lead to substantial financial expenses for repair of the railway infrastructure. Therefore, it is crucial to include adaptation strategies already in the design phase of the railway construction to ensure stability and integrity of the railway operations. This paper provides a literature review of adaptation considerations in Canada, China and Sweden and discusses climate change challenges that these countries face in their railway systems. In conclusion, the authors provide recommendations for adaptation approaches based on the reviewed international experience which can be useful for policymakers and managers of railway companies
    corecore